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Abstract.

Global numerical weather prediction is often limited by Lorenz–type “butterflies” in the flow. Here we think of these as

local flow configurations associated with pronounced uncertainty growth–rates, as demonstrated in short–range ensemble pre-

dictions. Some of these configurations correspond to potential instabilities of the flow. Often, forecasts for severe downstream

weather only show an improvement in skill when these butterflies have passed. Here we focus on the “cyclogenesis butterfly”5

— associated with baroclinic and convective instabilities in the extratropics. One question addressed is how do different op-

erational ensemble forecast systems (within the “TIGGE” archive) represent the associated uncertainty growth–rates? To test

which might be “better”, an extended spread–error equation is used to investigate how well these non–linear models main-

tain short–range statistical reliability during cyclogenesis. For the European Centre for Medium–Range Weather Forecasts

(ECMWF) ensemble, considerable short–range over–spread is found in the North Atlantic stormtrack during winter 2020/2110

— representing a source of untapped predictability (this result appears to generalise to other stormtracks and at least one other

model). Flow–type clustering demonstrates that this over–spread is directly associated with the representation of cyclogen-

esis. We attempt to quantify the contributions to the total spread in cyclogenesis cases from initial uncertainty (as derived

from ensemble data assimilation), singular vector perturbations, and model uncertainty. At day 2, we find that up to 25% can

be associated with the singular vectors and up to 25% with model uncertainty. The over–spread suggests that reductions in15

forecast error over recent years would permit further development of these uncertainty aspects. The sensitivities of spread to

resolution, the explicit representation of convection, and the assimilation of local observations provide additional insight for

future development.

1 Introduction

In numerical weather prediction (NWP), ensembles comprising multiple forecasts are generally made (Lewis, 2005) to repre-20

sent the chaotic growth of initial and model uncertainty (Sutton, 1954; Lorenz, 1963). The aim of these ensembles is to estimate

the solution to the Liouville equation (Ehrendorfer, 1994), which describes the state–vector distribution of an infinite set of

trajectories, as they diverge from their initial conditions on the system’s attractor. The initial distribution for ensemble forecasts

is generally obtained through data assimilation (Rabier et al., 2000; Humpherys et al., 2012), in particular ensemble data as-
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similation (Isaksen et al., 2010) which aims to represent flow–dependent error covariances in the background or “first–guess”25

(Bonavita et al., 2016) and in the observations (Geer et al., 2018), as well as model uncertainty (MU; Buizza et al., 1999) and a

model grid’s lack of representativity of point observations (Janjić et al., 2018). In some cases (including at ECMWF) “singular

vector” (SV; Molteni and Palmer, 1993) perturbations, which represent the most strongly growing modes over a finite time

interval (in the linear regime), are applied to the distribution of initial conditions as a pragmatic means of boosting ensemble

divergence.30

As implied by the existence of SVs, the divergence of trajectories within state–space is not uniform over the attractor, and

weather predictability is often limited by the Lorenz–type “butterflies” in the flow (Lorenz, 1972). Here we think of these as

local flow configurations where the chaotic and exponential growth–rate of uncertainty is particularly strong. Some of these

configurations correspond to potential instabilities of the flow — baroclinic (Lillo and Parsons, 2017) and convective (Sun

and Zhang, 2016; Rodwell et al., 2018) for example. The extratropical transition of tropical cyclones (TCs) can lead to a35

strong growth of uncertainty (Riemer and Jones, 2014) with implications for severe weather downstream (Grams and Blumer,

2015). This is perhaps an example of a more general issue associated with the interaction of a cut–off vortex with an upper–

tropospheric trough (Grams et al., 2018; Baumgart and Riemer, 2019). Sometimes the seeding of uncertainty growth can be

traced further back in time by regressing the ensemble against itself at an earlier lead–time. For example, strong growth of

uncertainty in the ECMWF ensemble during the interaction of TC Humberto with an extratropical upper–tropospheric trough40

in 2019 appeared to be seeded with local uncertainties in the TC three days earlier (not shown). Strong uncertainty growth

for Medicane Zorbas in 2018, associated with large uncertainties in the position of a potential vorticity streamer over the

Mediterranean, has also been linked to the downstream propagation of uncertainties in the North Atlantic waveguide several

days before (Portmann et al., 2020).

Although the location and structure of the early uncertainty growth will reflect the SVs of the flow (even when SV perturba-45

tions have not been explicitly applied), the magnitude of the growth–rate will depend on how strongly the uncertainty projects

onto these SVs (Leutbecher and Lang, 2014). Beyond the linear regime, growth–rates might be different again. Operational

ensembles may differ from the true growth–rate due to necessary approximations, although the stochastic representation of

model uncertainty (Buizza et al., 1999) aims to account for these approximations (Christensen, 2020). Hence there is a need to

evaluate the state–dependent growth–rate of uncertainty within operational forecasts. Here the focus is on what is termed here50

the “cyclogenesis butterfly” — associated with the intensification of extratropical cyclones. The key question is “How well do

models maintain statistical reliability during composites of cyclogenesis events?” The metric of reliability, discussed more fully

in section 6, being an extension of the “spread–error” relationship: which states that the mean ensemble variance (Spread2)

should agree with the mean–squared error of the ensemble–mean (Error2). In line with the examples discussed above, much

of the focus of this study is on reliability in the upper–troposphere, where uncertainties can propagate along the Jetstream /55

wave–guide and give rise to uncertainties in down–stream features such as anticyclonic “blocking” and extreme precipitation.

The study is structured as follows. Section 2 gives details of the data used. This includes data obtained for several of the

world’s operational ensemble forecasting systems from the “TIGGE” archive. Section 3 introduces two cyclogenesis case

studies, and Section 4 discusses the quantification of uncertainty growth–rates. Section 5 then calculates these growth–rates
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for the two case studies, and highlights differences between operational forecast systems in the TIGGE archive. To assess how60

well statistical reliability is maintained during such events, an “extended spread–error equation” is derived in Section 6. This

accounts for bias and analysis uncertainty to permit the assessment of reliability at all lead–times. In Section 7 the extended

spread–error equation is applied to two TIGGE models for the December 2020 – February 2021 (DJF 2020/21) season at a

lead–time of two days. To differing extents, both models are shown to be “over–spread” in the region of the North Atlantic

stormtrack. Focusing on the western part of the North Atlantic stormtrack, a clustering technique is used in Section 8 to65

identify cyclogenesis events in DJF 2020/21. Section 9 demonstrates that the seasonal–mean over–spread is associated mainly

with these cyclogenesis events. Section 10 returns to the case studies from Section 3 to quantify the spread contributions

from initial and model uncertainty, and to explore the sensitivity to resolution, the explicit representation of convection, and

the assimilation of local observations. Conclusions and a discussion are presented in Section 11. The Appendix is used to

provide some mathematical derivations, further detail, and additional figures. Supplementary material includes animations of70

uncertainty growth–rates.

2 Data

Here, a brief description of the datasets used is given. Further details are provided later in the text. The ECMWF re–analysis

version 5 (ERA5; Hersbach et al., 2020) is used to show the analysed development of the two case studies. The background

forecasts from the ECMWF Ensemble of Data Assimilations (EDA; Isaksen et al., 2010) are used to diagnose flow–dependent75

growth–rates in the standard deviation of (isentropic) potential vorticity (PV) for the ECMWF model. Further information

on the EDA is presented in Appendix E. The International Grand Global Ensemble (TIGGE) archive (Swinbank et al., 2016)

currently contains global ensemble forecasts from about a dozen of the world’s operational forecasting centres (12 centres were

present on 1 September 2021). These forecasts are available a few days behind real–time and are a valuable source of data for

diagnostic (and other) studies. The four centres focused on here, their archived ensemble sizes (perturbed + control) and data80

resolutions, are ECMWF (50+1mem, ∼15 km), the Japan Meteorological Agency (JMA, 26+1mem, ∼139 km), the United

States’ National Centers for Environmental Prediction (NCEP 30+1mem, ∼56 km), and the United Kingdom’s Met Office

(UKMO 17+1mem, ∼32 km). The 00 and 12 UTC initialisation times are used here for each model, although they are also

available at other times for some centres. This data is used to compare flow–dependent growth–rates in the standard deviation

of geopotential height amongst these four models, and for the systematic extended spread–error evaluation. Finally, a suite of85

sensitivity experiments is conducted with the ECMWF Integrated Forecast System (IFS) for the two case studies. This includes

EDA and ensemble forecast (ENS) aspects. Further information on the IFS is presented in Appendix E.

3 Introducing two case studies of the cyclogenesis butterfly

Before a more systematic investigation of the “cyclogenesis butterfly”, two cases are selected to highlight the salient features

in its development and its uncertainty. The cases were chosen because they were quite “clean”, without being strongly affected90
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by other flow perturbations in their environment, and because they involved both baroclinic and diabatic aspects. Figure 1

introduces the main synoptic–scale flow features of the two events. The cyclone of Case 1 develops on 26 November 2019

over the U.S. (not shown). By 18 UTC on 27 November it reaches the Great Lakes with a minimum sea level pressure (SLP) of

about 990 hPa. The cyclone then reaches the North American east coast with a similar intensity (Fig. 1a). There is a cutoff in

PV on the 315 K isentrope (PV 315) aloft and intense surface rainfall in the region identified as a warm conveyor belt (WCB).95

One day later (Fig. 1b), the cyclone has strongly deepened to below 974 hPa as it moves slowly out into the Atlantic. Intense

precipitation continues in the WCB ascent regions along the cold and bent–back fronts. The cyclone of Case 2 first occurs

as a weak system with a SLP minimum larger than 1010 hPa over Ohio at 00 UTC on 16 January 2020 (not shown). It then

propagates to the North Atlantic and deepens to less than 990 hPa ahead of a broad trough over eastern North America at 00

TC on 17 January, again with strong precipitation along the WCB ascent (Fig. 1c). During the next day, the cyclone deepens100

explosively and reaches a core pressure of about 960 hPa as it travels over the Atlantic south of Newfoundland (Fig. 1d). At

that time the WCB extends from 25◦N to 50◦N, associated with intense precipitation, and the PV 315 = 2 PV unit (2 PVU)

contour shows a prominent trough–ridge pattern over the western and central North Atlantic. This brief overview emphasizes

the strong deepening of the two systems off the North American east coast and their baroclinic and diabatic character. Forecast

experiments that investigate the strong cyclogenesis / deepening periods for these two cases are initialised at 12 UTC on 28105

November 2019 and 00 UTC on 17 January 2020.

4 The uncertainty growth–rate

The local uncertainty growth–rate of an ensemble forecast can be quantified as σ̂−1 ∂σ̂/∂t where σ̂ is the ensemble standard

deviation of some 1–dimensional state–measure (of the atmosphere). Since much of this local growth–rate can be associated

with the advection of uncertainty, Rodwell et al. (2018) calculated a “Lagrangian” growth–rate σ̂−1(∂σ̂/∂t+ v ·∇σ̂), which110

follows the ensemble–mean horizontal flow v. The state measure used by Rodwell et al. (2018) was isentropic potential

vorticity P on some upper tropospheric isentrope θ. Following the derivation of Baumgart and Riemer (2019), but with a

different formulation, the growth–rate of this measure can be related to sources of uncertainty growth via the equation

1
σ̂

{
∂σ̂

∂t
+ v ·∇θσ̂

}
=

1
σ̂2
P ′ (NC −v′ ·∇θP ) .

Non–con Advective

(1)

Here, an overline denotes a mean over ensemble members, and a prime denotes an ensemble member’s deviation from the115

mean. The “standard” (biased) estimator for variance is used throughout this study (with the bias explicitly removed where

necessary) so that here σ̂2 = P ′2. TheNC are the “non–conservative” tendencies in potential vorticity associated with diabatic

and frictional processes for each ensemble member (see Appendix A for the derivation). Following the discussion of Baumgart

and Riemer (2019), when Eq. (1) is applied to the upper troposphere, it shows how the growth–rate for PV will reflect local non–

conservative processes including near–tropopause radiative forcing (Chagnon et al., 2013), and non–linear advective tendencies120
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(a) 20191128 12Z

(d) 20200118 00Z(c) 20200117 00Z

(b) 20191129 12Z

Figure 1. Synoptic overview, based on ERA5 reanalyses, of the two cyclogenesis events at (a,b) 12 UTC on 28 and 29 November 2019 for

Case 1, and (c,d) 00 UTC on 17 and 18 January 2020 for Case 2. Shown are SLP (grey contours at intervals of 4 hPa), surface precipitation

accumulated over the previous hour (colour shading, in mm h−1), the PV 315 = 2 PVU contour indicating the tropopause on 315 K (black

solid line), and the WCB ascent region (red hatching). WCBs are identified as 48 h trajectories that ascend from the lower troposphere by

more than 600 hPa (e.g., Wernli and Davies, 1997; Madonna et al., 2014) and the ascent region (shown in red) corresponds to the envelope

of the horizontal positions of all WCB trajectories that are located between 800 and 500 hPa at the indicated time.

due to e.g. upper tropospheric Rossby–wave dynamics (emphasized by Baumgart and Riemer, 2019), deep tropospheric

interaction associated with baroclinic instability (e.g. Hoskins et al., 1985), and upper tropospheric divergence associated

with dry balanced dynamics (as represented by the “Omega equation” and “Q–vectors”; Sanders and Hoskins, 1990) and

mid–tropospheric diabatic forcing (e.g. Rodwell et al., 2013).

Note that there is a natural link between the growth–rate and the rate of change of the density of state–trajectories in the125

Liouville Equation (as discussed in section 1). Focusing on the probability density function (pdf) of any 1–dimensional state–

measure, for small (initial) uncertainty and assuming the shape of the pdf does not change greatly over a short (∼12 h) forecast

(only its mean and variance change), then ρ̂∝ σ̂−1 where ρ̂ is an estimate of the relative liklihood of the ensemble mean (the

value of the pdf at the ensemble–mean). Hence, for example, its rate of change following the ensemble–mean horizontal flow

can be estimated as minus the growth–rate, ρ̂−1(∂ρ̂/∂t+ v ·∇ρ̂) =−σ̂−1(∂σ̂/∂t+ v ·∇σ̂).130
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Figure 2. Single frame from the animation of cyclogenesis Case 1 in the EDA background ensemble forecast, focusing on synoptic spatio–

temporal scales. The frame is centred at 12 UTC on 29 November 2019. Plotted are the control forecast PV 315 = 2 PVU (red contour) and

v850 (vectors, which are plotted blue if the moisture flux at 850 hPa exceeds 100 gkg−1ms−1), the ensemble–mean precipitation (black

dots, with radius proportional to the precipitation rate up to the maximum size at 2 mmh−1), and the ensemble uncertainty growth–rate for

the ensemble standard deviation of PV 315 (shaded), as on the left–hand–side of Eq. (1). Contours extend the shading scheme to the most

extreme values, which are indicated at the ends of the colour bar. Further details are available in the main text and in Appendix B.

5 Initial uncertainty growth–rates in the two case studies

Figure 2 and Fig. 3 show a single frame from animations of the two cyclogenesis events, one day into the strong cyclogenesis

period. Shading depicts the PV 315 uncertainty growth–rate following the ensemble–mean flow, the red contour shows where

PV 315 = 2 PVU and vectors display the 850 hPa horizontal wind field (coloured blue when the 850 hPa horizontal moisture

flux exceeds 100 gkg−1ms−1), both from the control (unperturbed) forecast. Black dots indicate the ensemble–mean precip-135

itation rate. The animations are based on the ensemble of 12 h background forecasts made within the EDA for a sequence of

analysis cycles. By concatenating these cycles and applying a “synoptic” spatio–temporal smoothing, the animations follow

closely the true evolution of the synoptic flow, and highlight the features associated with enhanced growth–rates. Further details

are in the caption to Fig. 2 and in the Appendix Section B. The animations of the case studies, and for the whole DJF 2020/21

season, are available in the supplementary material.140

Strong growth–rates are seen at the southern extent of the upper–level trough in Fig. 2 and Fig. 3. More generally, in the

animation for DJF 2020/21, they tend to occur just ahead of the base of the upper–level tough — often preceeding cyclogenesis.

They also occur within strongly precipitating WCBs. Also evident in Fig. 2 and Fig. 3 are weaker negative growth–rates (where

the ensemble is tending to converge) particularly in the ridge–building regions at the head of WCBs. This feature is repeated in
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Figure 3. As Fig. 2 but for cyclogenesis Case 1, with the frame centred at 00 UTC on 18 January 2020.

numerous cases during the DJF 2020/21 season — a good example being around 2 February 2021. Further investigation of the145

potential processes discussed above, as in Baumgart and Riemer (2019), would be very valuable. For example, does differential

vorticity advection (as in the Omega equation) play an important role in the region at the southern extent of the upper–level

trough — either directly through uncertainty in the corresponding adiabatic ascent, or through uncertainties in the potential

diabatic feedbacks? Moreover, how well do these modelled growth–rates correspond to the divergence of state trajectories on

the real–world attractor? Here, a slightly easier question is first asked: “How well do growth–rates agree amongst the TIGGE150

models?”

Since potential vorticity is not archived in TIGGE, Z250 uncertainty growth–rates are calculated instead. Fig. 4 and Fig. 5

show the corresponding frames from animations based on the concatenation of 12 h forecasts from the four TIGGE models. For

the ECMWF model, the Z250 growth–rates (panels a) there is reasonable agreement with the PV 315 growth–rates in Fig. 2

and Fig. 3. The animation for the whole DJF 2021 season, also available in the supplementary material, displays numerous155

cyclogenesis events and suggests that all four models tend to enhance growth–rates at the southern extent of upper–level

troughs. Nevertheless, differences between the models in their uncertainty growth–rates are very evident in Fig. 4 and Fig. 5,

despite very similar upper–level height fields, low–level winds and precipitation. In particular, the ECMWF model tends to

display the strongest growth–rates.

Clearly differences in initialisation procedures, differences in the representation of model uncertainty, and differences in160

the deterministic models themselves will all contribute to the growth–rate differences between the forecast systems. It would

be useful to know which is closest to the truth, and why. In an attempt to begin to answer these questions, the next section
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(a) ECMWF 20191129 12Z
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(b) JMA 20191129 12Z

(c) NCEP 20191129 12Z (d) UKMO 20191129 12Z

Figure 4. A single frame, centred at 12 UTC on 29 November 2019, from an animation of the cyclogenesis case 1, focusing on synoptic

spatio–temporal scales, from (a) ECMWF, (b) JMA, (c) NCEP, and (d) UKMO ensemble forecast data obtained from the TIGGE archive.

Plotted are the control forecast Z250 (green contours) and v850 (vectors, which are plotted blue if the moisture flux at 850 hPa exceeds

100 gkg−1ms−1), the ensemble–mean precipitation (black dots, with radius proportional to the precipitation rate up to the maximum size

at 2 mmh−1), and the ensemble uncertainty growth–rate for Z250 (shaded), as in Eq. (1). Contours extend the shading scheme to the most

extreme values, which are indicated at the ends of the colour bar. Further details are available in the main text and in Appendix B.

discusses an extended spread–error equation which estimates deficiencies in short–range ensemble spread in the face of bias

and analysis uncertainty.

6 The “extended spread–error” equation165

For a reliable forecast system, the verifying truth should be statistically indistinguishable from any random sampling of the

forecast distribution (Hamill, 2001; Saetra et al., 2004). A necessary condition of reliability is that, when averaged over many

ensemble forecasts, the average difference between the truth and the ensemble mean (e.g., the mean–squared–error of the

ensemble–mean) should match the average difference between an ensemble member and the ensemble mean (e.g., the ensemble

variance). This is the so–called “spread–error equation”. In the present study, this equation is extended to account for bias170
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(a) ECMWF 20200118 00Z
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(b) JMA 20200118 00Z

(c) NCEP 20200118 00Z (d) UKMO 20200118 00Z

Figure 5. As Fig. 4, but centred at 0 UTC on 18 January 2020.

and analysis uncertainty (uncertainty in our knowledge of the truth), which can be non–negligible at the short lead–times

considered, in an “extended spread–error equation”:

n

n− 1
d2 =

m+ 1
m− 1

(
σ̂2
F̃

+ σ̂2
Ã

)
+

n

n− 1
d
2
+R .

Error2 Spread2 AnUnc2 Bias2 Residual(2)

(2)

An overline in Eq. (2) represents a mean over ensemble forecast start times. The schematic in Fig. 6 shows the salient aspects

of Eq. (2) for a single start time. An ensemble is considered to be a finite sampling of an “underlying distribution”. The175

ensemble–mean forecast is shown as µ̂F̃ , where a hat indicates that this is an estimator of the mean µF̃ of the underlying

forecast distribution, and a tilde indicates that the forecast is made with an imperfect model. Similarly, the ensemble–mean

analysis µ̂Ã is an estimator of the mean µÃ of the underlying analysis distribution. The line labelled d represents the departure

of the ensemble–mean forecast from the ensemble–mean analysis µ̂F̃ − µ̂Ã. The Error2 term in Eq. (2) is the scaled mean–

square of these departures. (Scaling ensures that the equation is unbiased with a finite number of forecasts n and finite ensemble180

size m). The extended spread–error equation Eq. (2) aims to relate Error2 to the sum of the mean–squares of the other lines

in Fig. 6. This is derived fully in the Appendix C. The resulting Spread2 and AnUnc2 (analysis uncertainty) terms involve the
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Figure 6. Schematic in 2 dimensions showing the “departure” d as the difference between the ensemble–mean of the operational forecast

µ̂F̃ and the ensemble–mean of the verifying operational analysis µ̂Ã. The forecast and analysis ensembles can be considered as finite sam-

plings of the underlying distributions with (mean,variance) = (µF̃ ,σ
2
F̃
) and (µÃ,σ

2
Ã
), respectively. Circles depict the hypothetical forecast

and analysis distributions with (mean,variance) = (µF ,σ
2
F ) and (µA,σ

2
A), respectively, that would be created with a perfect model (and

imperfect/incomplete observational information). The truth is indicated with a T .

variance estimators σ̂2
F̃

and σ̂2
Ã

of the forecast and analysis distributions, respectively. The Bias2 is the squared–mean of the

departures (the square of the estimated mean bias). The Residual(2) is the mean of the residuals that close the budget for each

initial time (assuming constant bias). The superscript (2) signifies that this is also in squared units, although it can be negative185

as well as positive.

If the mean Bias d is different from zero at some level of significance (here 5% with a t–test), then this indicates a bias

in the mean of the underlying forecast distributions relative to those of a perfect model (µF̃ −µF ) or a bias in the mean of

the underlying analysis distributions relative to those made using a perfect model (µÃ−µA). Similarly, if the Residual(2) is

different from zero at some level of significance, then this generally indicates a deficiency in the variance of the underlying190

forecast and/or analysis distribution. (A negative Residual(2) indicates a surplus in variance while positive values can indicate

a deficit in variance provided the main additional term in the Residual(2) — the variance of forecast bias — is negligible or

accounted for; see later. Hence, if either Bias or Residual(2) differ from zero, then this indicates a lack of reliability in either

the first or second moments of the forecast or analysis distributions. As lead–time increases, one might expect the issues in the

forecast distribution to begin to dominate.195

For display purposes the terms in Eq. (2) can be put into more understandable units by taking their square–roots — signified

by removing the superscript 2 label. Since R can be positive or negative, “Residual” =
√
|R| ·SGN(R) is plotted to retain the

sign. One should be aware that the square–rooting will tend to make smaller terms look more important than they really are in

the proper (squared) budget. Statistical significance is determined from the un–rooted terms (except for Bias2, which must be

determined in its non–squared form).200
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As an aside, a very similar equation was presented by Rodwell et al. (2016) for application in “observation space”. That

equation represents a more fundamental “ideal” where observation error variances are assigned to represent their true values.

In reality, these can be inflated to account for representativeness error (Rennie et al., 2021), observation error correlations, or

when associated with non–linear observation operators. This can mean that the budget will not balance for a given observation

type, even if the resulting analyses and forecasts are reliable in “model space”. Hence the current model space application205

represents a complementary approach, which can be more readily applied to a range of models and lead–times, and which can

be used to assess ensemble initialisation aspects.

7 Seasonal–means of the extended spread–error equation

Figure 7 shows the (square–rooted) terms of the extended spread–error equation for Z250 based on all day–2 ensemble fore-

casts verifying in DJF 2020/21 from the ECMWF (top) and UK Met Office (middle) ensembles, and the differences (bottom).210

Focusing first on ECMWF (top), the North Atlantic winter stormtrack is evident as a region of enhanced ensemble spread

(Fig. 7b). Even without the AnUnc and Bias contributions, the Spread is larger than required to balance the Error (Fig. 7a) —

signifying “over–spread” in the stormtrack at day 2. Analysis uncertainty is also enhanced in the stormtrack region (Fig. 7c)

and a statistically significant Bias is seen over the east coast of North America. Confirmation of the over–spread is seen with the

large negative Residual (Fig. 7e). Note the different colour–bar convention for the Bias and Residual, which can take positive215

and negative values. Over the North American east coast, the squared budget Eq. (2) is roughly 152 = 182 +32 +62−122 m2.

Because AnUnc and Bias are not negligible here, the reliable Spread (i.e., Spread in case of zero Residual) in this region would

actually be ∼ 13.42 m2, somewhat less than the 152 m2 which might be inferred from the standard spread–error relationship.

Accounting for the variance of forecast bias (which is difficult to estimate here but see later) would further reduce the reliable

Spread a little. In contrast, there is a positive Residual over the subtropical North Atlantic (Fig. 7e). Whether this indicates220

insufficient Spread to account for the elevated Errors in this region (Fig. 7a) or is associated with variance in forecast bias is

also discussed later.

The corresponding budget for the UKMO (middle row of panels) also indicates an over–spread in the stormtrack at day

2 (Fig. 7j), but by a smaller degree. The difference plots (bottom row of panels) show that Error, AnUnc and |Bias| are all

generally smaller for ECMWF (Fig. 7k, Fig. 7m, Fig. 7n). In particular, ECMWF starts from a somewhat sharper analysis225

distribution outside the stormtrack region. However, ECMWF forecast Spread grows more rapidly in the stormtrack, and

results in a stronger |Residual| than for the UKMO (Fig. 7o).

Note that the over–spread aspect is not specific to Z250 or the North Atlantic. Supplementary Figure D1 and Fig. D2 show

that similar conclusions can be drawn for the more commonly verified field of geopotential heights at 500 hPa in all the

northern and southern hemispheric stormtracks in DJF 2020/21 and June – August 2021 (JJA 2021). The UKMO ensemble230

appears particularly over–spread in polar regions. Note that these supplementary figures show the non–rooted terms to give a

better impression of the relative contributions to the overall budget in Eq. (2).
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Figure 7. Square–roots of terms in the extended spread–error budget Eq. (2) for Z250 based on all day 2 forecasts verifying in DJF 2020/21.

Note that Residual =
√
|R|SGN(R) to retain the correct sign. Data comes from the TIGGE archive for the ECMWF (top) and UKMO

(middle) models, with the differences plotted on the bottom row. Note that the difference of absolute values is shown for Bias and Residual

so that blue (red) implies that ECMWF is better (worse) than UKMO for any attribute difference. Contours extend the shading scheme to

the most extreme values, which are indicated at the ends of the colour bars. Statistically significant values are shown with more saturated

colours. Area means (for the area displayed) are indicated at the top of each panel (e.g. “Sig: 85%” means that 85% of the area shown is

significant at the 5% significance level, using an auto–regressive AR(1) model to take account of serial correlation). To avoid the potential

for artificial weakening of significance associated with diurnal variability, the terms are diurnally averaged (average over 00 and 12 UTC)

prior to testing.

A key question for this study is whether the ECMWF Residual (Fig. 7e) is associated with a general level of over–spread

(e.g. associated with uncertainties in large–scale waves Durran and Gingrich, 2014), or whether it is associated with difficulties

in modelling particular flow evolutions, such as cyclogenesis? This question will be addressed based on a clustering of the flow235

configurations in DJF 2020/21. In the next section, the method of clustering is discussed.
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8 Flow–type clustering

The method of K–means clustering (Hartigan and Wong, 1979) is used to obtain three flow clusters in a prescribed region.

The data used within the clustering come from the ECMWF forecasts initialized at 00 and 12 UTC, with Z250, and zonal and

meridional wind at 850 hPa (u850, v850) at step 0 from the control forecast during DJF 2020/21, and ensemble–mean 12 h240

accumulated total precipitation from the previous forecast (so the end of the accumulation period corresponds to the time of

the circulation fields). It is thought that these fields should be able to capture upper–tropospheric Rossby waves, baroclinic

structures and associated diabatic processes. Three clusters should provide sufficient degrees of freedom to differentiate the

possible flow–types. Each field is on a regular F32 (∼300 km) Gaussian grid, standardised (about its area– and temporal–mean)

and root–cos–latitude–weighted prior to application of the clustering algorithm (total precipitation is standardised by dividing245

by the square root of its area– and temporal–mean–squared value). This is to give approximately equal weight to each field and

sub–region. Three random date/times (out of the 180 date/times available within the season) are used to initialise the clusters,

and 100 such initialisations are performed. The minimum total within–cluster variance is generally found within the first 5

such initialisations — indicating that the optimal clusters have been identified.

The first clustering region is located at the head of the North Atlantic stormtrack [80◦–50◦W, 30◦–50◦N] and contains250

11×7 data points on the F32 grid. The rationale for choosing this region is that it corresponds to the North Atlantic “hot

spot” for cyclone intensification (e.g. Wernli and Schwierz, 2006) and warm conveyor belt activity (Madonna et al., 2014),

and its size corresponds to a half–wavelength of a typical baroclinic wave. Figure 8 shows the same fields as in Fig. 4 and

Fig. 5 but averaged over the three sets of date/times obtained from the K–means clustering in this (indicated) region. Cluster 1

(Fig. 8a, 32 date/times) appears to capture a partially–evolved cyclogenesis flow–type off the east coast of North America, with255

a baroclinic westward tilt with height, intense horizontal moisture flux and precipitation ahead. Strong uncertainty growth–rate

at the southern extent of the upper–level trough is also evident. (Note that the growth–rate is not used within the clustering

algorithm since this is what will be evaluated). Cluster 2 (Fig. 8b, 75 date/times) shows a broader trough, weaker moisture flux,

and possible cyclogenesis, displaced further downstream. Cluster 3 (Fig. 8c, 73 date/times) shows a diffuse ridge with a trough

even further downstream, and a surface anticyclone in the subtropical western North Atlantic.260

A second clustering region is displaced north–eastward along the stormtrack [65◦–35◦W, 35◦–55◦N] and also contains 11×7

data points. Clustering results for this region are shown Fig. 9. Cluster 1 (Fig. 9a, 62 date/times) highlights further cyclogenesis

with a closed cluster–mean circulation at 850 hPa over Newfoundland and with strong growth–rates.

In total, 91 date/times were identified as cyclogenesis flow–types (32+62 minus 3 duplicates). For each of these date/times

(and their 180-91=89 counterpart date/times), visual inspection of plots similar to those for the two case studies (Fig. 1)265

suggests that the objective clustering has been successful in partitioning the date/times into cyclogenesis and non–cyclogenesis

flow–types. This then allows the evaluation of the extended spread–error budget for a large set of cyclogenesis events and of

the counterpart set.
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(a) Cluster 1 (size=32)
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(b) Cluster 2 (size=75) (c) Cluster 3 (size=73)

Figure 8. Means over the date/times for each cluster obtained from K–means clustering in the black–bordered region on the fields of

Z250 (contours), u850 and v850 (vectors) from ECMWF control (unperturbed) forecasts at step 0, and ensemble–mean 12 h accumulated

precipitation (dots) valid (or end of accumulation) at 00 and 12 UTC within the period DJF 2020/21. Although not used in the clustering,

shading shows the corresponding mean 12 h uncertainty growth–rate Eq. (1) for Z250. Vectors are coloured blue when the humidity flux at

850 hPa exceeds 100 gkg−1. More saturated shading, contours and vectors indicate statistical significance at the 5% level (not accounting for

autocorrelation due to the discontinuous nature of date/times in each cluster).

(a) Cluster 1 (size=62)
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(b) Cluster 2 (size=78) (c) Cluster 3 (size=40)

Figure 9. As Fig. 8 but for clustering in the second region (again indicated by a black border).

9 The extended spread–error equation for cyclogenesis flow–types

Because Fig. 8a and Fig. 9a show partially evolved cyclogenesis flow–types, it is necessary to wind–back the date/times a little270

to evaluate the day–2 extended spread–error budget during cyclogenesis. Winding back by one and two days gives very similar

results (not shown). Also, conclusions are very similar for the evaluation based on the date/times obtained for the first region

alone; albeit with the impact more confined to the head of the stormtrack. Here, results are shown for a 2–day wind–back

(consistent with the time for moderate deepening of a low–pressure system; Wernli and Davies, 1997) and for both regions

together. This means that the combined 91+89=180 date/times of the cyclogenesis and counterpart composites represent the275

same initial date/times used in Fig. 7 (top row).
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Figure 10. As Fig. 7 but separately for the cyclogenesis cluster date/times (top) and the non–cyclogenesis counterpart cluster date/times

(middle), for forecasts that start two days prior to the cluster classifications. The bottom row shows cyclogenesis minus counterpart. The two

clustering regions are indicated by black borders. Due to the discontinuity of date/times, diurnal averaging prior to statistical testing and the

accounting for autocorrelation are not appropriate.

Figure 10 shows the (square–roots of) the terms in the extended spread–error equation Eq. (2) for Z250 at day 2, separately

for cyclogenesis (top) and counterpart (middle) composites, and their difference (bottom). Comparison shows that ensemble

spread for the cyclogenesis composite (Fig. 10b) is enhanced around the head of the North Atlantic stormtrack while the

spread for the counterpart composite (Fig. 10g) is centred more downstream. There are also corresponding differences in280

analysis uncertainty (Fig. 10c and Fig. 10h), possibly due to differing uncertainty growth–rates in the background forecasts

used within the ensemble data assimilation process.

Figure 10n indicates a significant flow–dependent difference in mean absolute forecast bias (of about 6 m) along the eastern

coast of North America. This equates to a variance in forecast bias of∼32 m2 — suggesting that this term is as important in (the

Residual term of) the day 2 extended spread–error budget for the whole of DJF 2020/21 as the explicitly represented analysis285

uncertainty (Fig. 7c), and would suggest an even stronger over–spread issue (cf. term estimates in Section 7). In contrast, the
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positive Residual term over the subtropical North Atlantic (Fig. 7e) could reflect variance in forecast bias (∼Fig. 10n) rather

than simply indicating ensemble under–spread. Thinking more broadly, it is possible that the variance in forecast bias might

also be important for the development of “weak constraint” approaches to data assimilation, which attempt to account for

model bias (Laloyaux et al., 2020). Here, in this flow–dependent evaluation, the inter–cluster variability in forecast bias is290

explicitly represented in Fig. 10d and Fig. 10i. Notice that the bias along the east coast of North America for the counterpart

composite (Fig. 10i) appears to account for the increased errors seen in this region (compare Fig. 10f and Fig. 10a).

The overall assessment of ensemble spread is seen in the residual terms (Fig. 10e and Fig. 10j). Here it is evident that almost

the entire over–spread in the region of focus, at the head of the North Atlantic winter stormtrack (Fig. 7e) is associated with

the cyclogenesis composite. This is a key conclusion of this study.295

The approach of this study was to assess reliability within a single season, because one instance of any given season is

often all that is available within the operational forecast development process. One caveat to the approach taken is the lack of

independent assessment; we are choosing initial conditions which we know do evolve with cyclogenesis. If anything, through

“regression to the mean”, this would suggest larger errors for the cyclogenesis composite at the head of the stormtrack —

something which is not seen (cf. Fig. 10a and Fig. 10f). Hence, we do not feel this aspect compromises the conclusions drawn300

here.

10 Sensitivity experiments — including quantifying the roles of initial and model uncertainty

The final part of this paper returns to the two case studies of cyclogenesis discussed in Sections 3 and 5. Here, sensitivity

studies are conducted to quantify the sources of uncertainty at day 2 in ECMWF’s Integrated Forecasting System (IFS). The

base configuration is IFS cycle 46r1, which was operational from 11 June 2019 to 20 June 2020. This includes the Ensemble305

of Data Assimilations (EDA), which combines observational and background information to provide the initial conditions for

the ensemble forecast (ENS). Both the EDA and ENS are run at∼18 km resolution with 50 members. For the interested reader,

the salient details of IFS cycle 46r1, along with the minor technical changes required to run the sensitivity experiments, are

presented in Appendix E.

The configuration diagram in Fig. 11 refers to the base “operational” configuration as EDA=OP, ENS=OP. In the sensitivity310

experiments, this configuration is successively modified. By turning off singular vector perturbations globally (OP-SV), model

uncertainty globally (OP-SV-MU) and the parametrization of deep convection in a local box (OP-SV-MU-DC), or increasing

model horizontal grid resolution to ∼4 km (OP-SV-MU+4km), or not assimilating observations within a given region in the

EDA (OP-Obs) and again running the ENS configuration OP-SV-MU. Differences between these configurations (as indicated

by the vertical arrows in Fig. 11) allow the diagnosis of individual aspects. The conclusions are not thought to be sensitive to315

the ordering of the various modifications.

Figure 12 shows day 2 results for the standard deviation (spread) in Z250 from sensitivity experiments for cyclogenesis

Case 1, initialised at 12 UTC on 28 November 2019 (i.e., the validity time is one day later than that where the growth–rate

fields were centred in Fig. 2 and Fig. 4a). Grey contours show mean sea–level pressure, and the black contour shows where
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EDA ENS Sensitivity Diagnosis

OP
OP
OP-SV
OP-SV-MU
OP-SV-MU-CP
OP-SV-MU+4K

OP-Obs
OP-SV-MU

SV Singular Vectors
MU Model Uncertainty
DC Deep Conv. Param. (local)
4km Resolution

Obs Observations (local)

Figure 11. Configuration of IFS sensitivity experiments. These involve the Ensemble of Data Assimilations (EDA) and the Ensemble forecast

(ENS). Differences between these configurations allow the diagnosis of sensitivity to individual aspects as indicated. See main text for further

details.

PV 315 = 2 PVU — highlighting the location of the tropopause on the 315 K isentrope) in the unperturbed EDA analysis. A320

parallel set of results for spread in PV 315 is shown in Fig. 13 (discussed later).

Figure 12a shows the OP configuration with a well–developed surface low pressure system, as discussed in relation to Fig. 1.

The prominent warm conveyor belt (WCB) associated with this cyclone is seen to lead to the development of a prominent

downstream upper–level ridge. The Z250 spread represents the temporal integral of the local tendency, and hence the effects

of “material” generation and advection. The impact of the initial SV perturbations on Z250 spread (Fig. 12b) is particularly325

pronounced in the cyclone’s cold sector and along the downstream tropopause. There are places where the SV impact on

spread is half the total (so that the fraction of variance explained reaches 25%). The impact of the model uncertainty (MU)

representation (Fig. 12c is particularly pronounced in the cyclone centre and in the region of the WCB ahead of the surface low.

MU also explains up to 25% of the total variance. The remaining variance must be associated with the (deterministic) growth

of initial EDA analysis uncertainty.330

The impact of including parametrized deep convection (DC) in the indicated region (Fig. 12d; note the smaller contour

interval) is a reduction in spread — particularly in the WCB region — that would otherwise be created when the model

attempts to resolve this convection. This reduction in spread may go some way to explaining why Rodwell et al. (2018)

identified under–spread associated with mesoscale convective systems over North America. Interestingly ensemble–mean total

precipitation (parametrized plus resolved) is little changed when turning off parametrized deep convection, both in location335

and amount (not shown).

The impact of increasing the model grid resolution to ∼4 km is mixed. For Z250 spread (Fig. 12e; note the smaller contour

interval), the impact is generally weak. In contrast the impact on PV 315 spread (Fig. 13e) is strong, particularly within the

WCB region. The smaller scales associated with PV 315, and its sensitivity to vertical gradients in diabatic heating in the upper

troposphere might help explain this sensitivity to the increase in resolution. Given that model uncertainty (MU) representation340

is thought to partly account for the impact of sub–grid–scale uncertainty, perhaps the most interesting aspect here is the lack of

agreement with the MU impact (cf. Fig. 13e and Fig. 13c). Forcing the model to explicitly resolve this convection (even if at

the wrong ∼18 km scale) appears to better locate the uncertainty with that generated by the ∼4 km km model (cf. Fig. 13e and
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Figure 12. Sensitivity results for cyclogenesis Case 1, showing day–2 Z250 spread (shaded) from ECMWF ensemble forecast experiments

initialised at 12 UTC on 28 November 2019. (a) Total spread for the near–operational configuration OP. (b)–(f) Differences in spread between

experiments which highlight the impacts of (b) including initial Singular Vector perturbations, (c) including the Model Uncertainty repre-

sentation, (d) including the parametrization of Deep Convection in the indicated region, (e) an increase in model grid resolution to ∼4 km,

and (f) the assimilation of observations in the indicated region. Contours extend the shading scheme to the most extreme values, which are

indicated at the ends of the colour bars. Also shown in each panel are the mean–sea–level pressure (grey contours) and PV=2 PVU on the

315 K isentrope (black contour) from the unperturbed EDA analysis.

18

https://doi.org/10.5194/wcd-2022-6
Preprint. Discussion started: 3 February 2022
c© Author(s) 2022. CC BY 4.0 License.



(a) OP

Unit: 0.1PVU Mean: 4.55 RMS: 6.93

0 4 8 12 16 20 24 36

H

H

H H

L
L

10 hPa

H

H

H H

L
L

10 hPa

2 PVU
(b) SV

Unit: 0.1PVU Mean: 0.87 RMS: 1.88

-14 -10 -6 -2 2 6 10 14

H

H

H H

L
L

10 hPa

H

H

H H

L
L

10 hPa

2 PVU
(c) MU

Unit: 0.1PVU Mean: 0.9 RMS: 2.04

-14 -10 -6 -2 2 6 10 18

H

H

H H

L
L

10 hPa

H

H

H H

L
L

10 hPa

2 PVU

(d) DC

Unit: 0.1PVU Mean: -0.72 RMS: 2.69

-22 -10 -6 -2 2 6 10 18

H

H

H H

L
L

10 hPa

H

H

H H

L
L

10 hPa

2 PVU
(e) 4km

Unit: 0.1PVU Mean: 1.07 RMS: 2.86

-14 -10 -6 -2 2 6 10 46

H

H

H H

L
L

10 hPa

H

H

H H

L
L

10 hPa

2 PVU
(f) Obs

Unit: 0.1PVU Mean: -0.11 RMS: 0.866

-13 -5 -3 -1 1 3 5 9

H

H

H H

L
L

10 hPa

H

H

H H

L
L

10 hPa

2 PVU

Figure 13. As Fig. 12, but shading shows the spread in PV 315.

minus Fig. 13d). The increase in resolution also results in a small shift of ensemble–mean precipitation from parametrized to

resolved, with little change in the total (not shown).345

Figure 12f shows the impact of using observations in the indicated region during the single data assimilation cycle that

generated the initial conditions (as shown in Fig. 11, this impact is deduced from a data denial experiment; observations

outside the indicated region are used in both experiments). The assimilation of observations in this baroclinic region acts to

reduce initial uncertainty (not shown) and to reduce day 2 spread in the developing low (Fig. 12f, Fig. 13f). This reduction in

spread is interesting because it helps quantify the role of local observations relative to that of remote observational information,350

which can propagate into the region within the 4DVar process.

Figure 14 and Fig. 15 show the corresponding results for Z250 and PV 315, respectively, for the cyclogenesis Case 2,

initialised at 00 UTC on 17 January 2020. Many results are similar — indicating that the conclusions drawn in this section are

robust even with only two cases. In particular, the contributions to the total variance from SVs (Fig. 14b) and MU (Fig. 14c),

with the SV impact largely in the cold sector and the MU impact in the region of the WCB. Again, the parametrization of355

deep convection acts to reduce spread in the WCB (Fig. 14d). For PV 315, the impact of increased resolution (Fig. 15e) is

again more similar to the effect of turning–off convective parametrization (minus Fig. 15d) than to that of model uncertainty
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Figure 14. As Fig. 12 but for Cyclogenesis Case 2, with ENS forecast experiments initialised at 00 UTC on 17 January 2020.

(Fig. 15c). There is a reduction in initial spread from the assimilation of local observations (not shown), although it is weaker

than in Case 1, and its impact at day 2 (Fig. 14f and Fig. 15f) is marginal.

11 Conclusions and Discussion360

The “calibration” of ensemble spread to achieve reliability in an area–mean, temporal–mean sense can only take NWP devel-

opment so far. To go further, it seems important to ensure that ensembles can maintain (short–range) reliability through their

development of different flow–types. This study has focused on the flow–type associated with extratropical cyclogenesis. It has

been demonstrated that the growth–rate of ensemble spread in 250 hPa geopotential heights within cyclogenesis varies sub-

stantially amongst four forecast models in the “TIGGE” archive. In theory, the growth–rate aims to represent (minus) the rate365

of change of probability density on the real–world’s attractor — as described by the Liouville equation — so there should be a

“correct” solution in terms of uncertainty growth–rate. While necessary approximations mean that all operational models will

be compromised, it would be useful to have a framework for comparison, for deciding which model, or model update, is better

able to maintain short–range reliability. Here, an approach based on short–range flow–dependent evaluation of an “extended
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Figure 15. As Fig. 14, but shading shows the spread in PV 315.

spread–error equation” has been developed. It is found that the two models evaluated in this way (from ECMWF and the UK’s370

Met Office) are over–spread in the winter North Atlantic stormtrack (and indeed in all stormtracks). This represents a source

of “untapped predictability” if it can be isolated and improved. Rather than representing a general over–spread in forecasts, it

is demonstrated (for the ECMWF model over the western North Atlantic) to be associated with the cyclogenesis flow–type —

involving an upper–level trough, and baroclinic and convective instabilities in the extra–tropics.

Case studies reveal the sources of uncertainty. A large part is associated with the chaotic growth of initial uncertainty within375

the deterministic model, but singular vector perturbations to the initial conditions and model uncertainty representations are

also important. Dry singular vectors, which target baroclinic instabilities (Molteni and Palmer, 1993), and which are optimised

at ECMWF for 2–day growth, may well be implicated in the over–spread. If so, then this would suggest the desirability to

reduce their magnitude when other factors permit. Such a reduction would make the ensemble forecast more consistent over

lead–times and permit a better use of initial growth–rates in the evaluation of model uncertainty. Furthermore, sensitivities to380

switching–off the parametrization of deep convection and to increasing model resolution suggest that the model uncertainty

representation could be more strongly focused on convective instabilities (e.g., Christensen et al., 2017). One might speculate

whether the effects of moist singular vectors could be represented within the formulation of model uncertainty itself.
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Code and data availability. The key conclusions in this study are derived from data in the “TIGGE” archive, which is freely accessible. The

ERA5 reanalysis data is also freely available. Other data and diagnostic code are available from the authors upon request.385

code available

Video supplement. Growth-rate animations are available as supplementary material.

Appendix A: Derivation of local growth–rate equation for isentropic PV

If Pi, vi are the isentropic potential vorticity and horizontal wind vector for ensemble member i (= 1, . . . ,m), respectively,

then ∂Pi/∂t+vi ·∇θPi =NCi, where t is time, ∇θ is the gradient operator on the isentropic surface θ, and NCi represents390

the effects of “non–conservative” diabatic and frictional processes. Using an overline to denote a mean X =m−1
∑
iXi, and

a prime to denote deviations from the mean X ′i =Xi−X , then the variance of the Pi can be written as σ̂ = P ′2, and the local

growth–rate of the standard deviation written as

1
σ̂

∂σ̂

∂t
=

1
2σ̂2

∂σ̂2

∂t

=
1

2σ̂2

∂P ′2

∂t

=
1
σ̂2
P ′
(
∂P

∂t
− ∂P

∂t

)

=
1
σ̂2
P ′ (NC −v ·∇θP )

=
1
σ̂2
P ′
(
NC − (v + v′) ·∇θ(P +P ′)

)

=− 1
2σ̂2

v ·∇θP ′
2 +

1
σ̂2
P ′ (NC −v′ ·∇θP )

=− 1
σ̂

v ·∇θσ̂+
1
σ̂2
P ′ (NC −v′ ·∇θP ) .

(A1)

Appendix B: Further details on the growth–rate plots395

Figure 2 and Fig. 3, and animations 1 and 2 in the supplementary material show, for the two cyclogenesis cases, the growth–rate

Eq. (1; left-hand-side) in the ensemble standard deviation of potential vorticity on the 315 K isentrope σ̂PV 315 following the

ensemble–mean horizontal flow v315. This is derived from background (first–guess) forecasts within the ECMWF operational

EDA (see Appendix E), initialised at 06 and 18 UTC, and for hourly lead–times 0–12 h. Fields of PV 315 and zonal and

meridional winds at 315 K (u315 and v315) are interpolated to an “N32” reduced Gaussian grid (with 32 latitudes between400
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the pole and equator). The spatial derivatives within the advection term in Eq. (1) are calculated using spectral transforms to

and from a “T42” spherical harmonic representation (total wavenumbers 6 42). Note that N32 is sufficient to avoid aliasing of

higher harmonics of the quadratic advection term into the T42 representation. To focus on synoptic spatial scales, PV 315 and

the growth–rate of σ̂PV 315 are then spatially smoothed by multiplying spectral coefficients (with total wavenumber n > ns =

21) by {ns(ns+1)}/{n(n+1)}. For the lower–tropospheric fields shown, zonal and meridional winds and specific humidities405

at 850 hPa (u315, v315, q850) and surface pressure p∗, all from the background forecasts of the control EDA member, are

first interpolated to an “O32” octahedral reduced Gaussian grid (with 32 latitudes between the pole and equator). Values are

set to “missing” where the 850 hPa surface is below the land surface (where p∗ < 850 hPa) and the moisture flux is calculated

as q850
√
u8502 + v8502. The ensemble–mean total precipitation rate is used to indicate where precipitation is likely to occur.

This is obtained on a higher resolution “O80” octahedral grid to give a good symbolic representation (stippling) of rainfall.410

To focus on synoptic timescales, a 1–day running mean is applied to all fields before plotting. Note that animation 3 in the

supplementary material shows the animation for the entire DJF 2019/20 season.

Figure 4 and Fig. 5 and animations 4 and 5 in the supplementary material show, for the two cyclogenesis cases, the growth–

rate in the ensemble standard deviation of geopotential height at 250 hPa σ̂Z250 following the ensemble–mean horizontal flow

v250 for the four chosen TIGGE models. Animation 6 in the supplementary material shows the entire DJF 2019/20 season.415

These are derived from ensemble data obtained from the TIGGE archive for forecasts initialised at 00 and 12 UTC, and for

lead–times 0, 6, 12 h. All other aspects are the same as for the plots of the σ̂PV 315 growth–rate with the exception that the

plotted Z250 field is not spatially smoothed (it is considered already a synoptic–scale field).

Appendix C: Derivation of the “extended spread–error” equation

With reference to the schematic shown in Fig. 6, consider initially a single ensemble forecast, and thus consider an initial time420

tj for some fixed value of j. Next consider a perfectly reliable forecast/analysis system. As discussed in section 6, the verifying

truth Tj should be statistically indistinguishable from any random sampling of the forecast distribution Fj . This distribution

need not be Gaussian or even uni–modal, but let it have mean µFj and variance σ2
Fj . The verifying analysis distribution Aj is

constructed using observations of the truth (amongst other things), so that its mean and variance will be the conditional random

variables µAj |Tj and σ2
Aj |Tj . Again, for a reliable analysis distribution, the Tj should be statistically indistinguishable from425

any random sampling of Aj . (Because of the conditionality above, it is actually uncertainties in the analysis distribution which

can enable this). Now consider a realistic forecast/analysis system which need not be reliable. Let the “underlying” forecast

distribution F̃j have mean µF̃ j and variance σ2
F̃ j

, and the underlying verifying analysis distribution Ãj have mean µÃj and

variance σ2
Ãj

. Finally, let the estimators of these quantities based on the real ensemble (finite samplings of F̃j and Ãj) be
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µ̂F̃ j , σ̂
2
F̃ j

, µ̂Ãj and σ̂2
Ãj

. The departure of the ensemble–mean forecast µ̂F̃ j from the ensemble–mean analysis µ̂Ãj can then be430

written (by following the other lines in Fig. 6) as:

dj = (µ̂F̃ j − µ̂Ãj)

= (µ̂F̃ j −µF̃ j) + (µF̃ j −µFj) + (µFj −Tj) + (Tj −µAj) + (µAj −µÃj) + (µÃj − µ̂Ãj)

= (µFj −Tj)︸ ︷︷ ︸
1

+(µ̂F̃ j −µF̃ j)︸ ︷︷ ︸
2

+(Tj −µAj)︸ ︷︷ ︸
3

+(µÃj − µ̂Ãj)︸ ︷︷ ︸
4

+(µF̃ j −µFj)︸ ︷︷ ︸
5

+(µAj −µÃj)︸ ︷︷ ︸
6

,

(C1)

where the last line is just a convenient re–arrangement of the terms on the second line.

The terms 1–6 in Eq. (C1) would be difficult to quantify in the operational forecast system because they require knowledge

of the truth and the moments of the underlying distributions (only dj , µ̂F̃ j and µ̂Ãj are quantifiable). Nevertheless, we can435

discuss their expected values. Define Ej [·] to be the expectation for a given j. Since j is fixed, so are the distributions Fj and

F̃j ; the expectation is over all samplings F̂j of F̃j , all potential Tj and corresponding analysis distributions Aj and Ãj , and all

samplings Âj of Ãj . Taking the expectation of the last line in Eq. (C1) we have:

Ej [dj ] = Ej [5+6] = Ej
[
(µF̃ j −µFj)− (µÃj −µAj)

]
≡ βF̃ j −βÃj ≡ βj , (C2)

since terms 1–4 in Eq. (C1) have zero expectation. Hence Ej [dj ] = βj : the expected bias of the unreliable forecast βF̃ j minus440

the expected bias of the unreliable analysis βÃj . As lead–time increases, one might expect that the forecast bias will become

the dominant component of βj

The “extended spread–error equation” is based on the expected square of Eq. (C1). This involves squared terms, such as

Ej [1 ·1], and cross terms, such as 2Ej [1 ·6]. In general the squared terms might be thought to dominate, leading to (in the same

order as the last line in Eq. (C1)):445

Ej [d2
j ] ≈ σ2

Fj +
1
m
σ2
F̃ j

+σ2
Aj +

1
m
σ2
Ãj

+ (βF̃ j −βÃj)2 + Ej

=
m+ 1
m

(σ2
F̃ j

+σ2
Ãj

) +β2
j +

{
(σ2
Fj −σ2

F̃ j
) + (σ2

Aj −σ2
Ãj

)
︸ ︷︷ ︸

Variance deficit

+Ej
}

.
(C3)

The term in parentheses { } comprises the “variance deficit” (which compares the reliable and unreliable variances of the

ensemble forecast and analysis) and Ej , which collects any potentially non–zero cross–terms and the (expected) variance in

analysis bias (see later for further discussion).

From Eq. (C3), the expected squared departure (over an infinite set of initial forecast times tj) can then be written as450

E[d2] =
m+ 1
m

E[σ2
F̃

+σ2
Ã
] + E[β]2 + E[R] , (C4)
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with expected “residual”,

E[R] = E
[
(σ2
F −σ2

F̃
) + (σ2

A−σ2
Ã
)
]

+ E [E ] + σ2
β , (C5)

where σ2
β = V[β] accounts for the explicit replacement of E[β2] with E[β]2 in Eq. (C4). It can be seen that all terms that involve

variations in bias have been moved into the residual.455

For an unbiased estimator of Eq. (C4), we note that
(
E[d2]−E[β]2

)
=
(
E[d2]−E[d]2

)
= V[d] which has unbiased estimator

n
n−1

(
d2− d2

)
, and obtain the extended spread–error equation:

n

n− 1
d2 =

m+ 1
m− 1

(
σ̂2
F̃

+ σ̂2
Ã

)
+

n

n− 1
d
2
+R , (C6)

where R can be written as the mean of the residuals Rj :

Rj ≡
n

n− 1

(
d2
j − d

2
)
− m+ 1
m− 1

(
σ̂2
F̃ j

+ σ̂2
Ãj

)
, (C7)460

which close the budget for each initial time (for given, constant d). The extent to which R is a good estimate for the expected

“variance deficit” in Eq. (C5) will depend on the magnitude of the other terms E [E ]+σ2
β in Eq. (C5). The only potentially non–

zero terms in E [E ] appear to be 2Ej [1 ·6] (if the analysis bias is dependent on the true state), 2Ej [2 ·4] (at short lead–times and

for small ensemble sizes if the analysis is dependent on background forecasts) and the expected variance of the analysis bias (a

component of Ej [6 ·6]). These terms are difficult to quantify but estimation suggests that they are likely to be negligible (the465

estimation was based on 10 DJF seasons, a 50–member ensemble size, day–2 temperatures at 500 hPa, and analysis departures

from “AMSUA” satellite channel 5 brightness temperatures). Thus the only additional term that may need accounting for is the

variance in forecast bias, σ2
β . In the flow–dependent evaluation discussed here, this is (at least partially) accounted for explicitly

(and is non–negligible).

Appendix D: Global plots of the extended spread–error equation470

Figure D1 and Fig. D2 show global plots of the extended spread–error equation, applied to geopotential height at 500 hPa at

day–2 in their non–rooted form, for DJF 2020/21 and JJA 2021 seasons, respectively. ECMWF displays smaller root–mean–

square errors of the ensemble–mean than UKMO, and smaller analysis uncertainty. In all winter stormtrack regions, ECMWF

shows larger spread (and over–spread) than UKMO. In polar regions, UKMO shows larger spread (and over–spread) than

ECMWF.475
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Figure D1. As Fig. 7, but for geopotential height at 500 hPa and showing global maps of the (non–rooted) terms in the extended spread–error

budget Eq. (2). Simple differences are shown in the bottom panels.
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Figure D2. As Fig. D1, but for June – August 2020 Eq. (2).
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Appendix E: Salient aspects of ECMWF’s Integrated Forecasting System

The sensitivity studies are based on cycle 46r1 of the IFS. This cycle was operational from 11 June 2019 to 20 June 2020.

The underlying model uses spherical harmonics to compute much of the dynamics, with physical parametrizations computed

in grid–point space. Of particular interest here is the parametrization of convection, which was originally based on Tiedtke

(1989), but includes revisions to entrainment and coupling with the large scale (Bechtold et al., 2008; Hirons et al., 2013),480

and improvements in the diurnal cycle of convection through use of a modified convective available potential energy (CAPE)

closure (Bechtold et al., 2014). This model is used within the EDA (Isaksen et al., 2010) and the ENS (Palmer et al., 1992;

Molteni et al., 1996). The 50–member EDA has horizontal grid resolution ∼18 km (the model’s spectral resolution is T639

and a cubic “octahedral” grid is used so that 4 grid–points represent the smallest waves — the resolution is thus summarised as

TCo639) with 137 levels in the vertical (L137) and a 12 min timestep. 4D Variational data assimilation (4DVar, Rabier et al.,485

2000) is used to extract the information content from many millions of conventional and satellite observations during each 12 h

analysis cycle. After initial screening, observations are corrected using Variational Bias Correction (VarBC, Dee, 2004) and

randomly perturbed in each EDA member to simulate observation uncertainty (Isaksen et al., 2010). Background uncertainty

is dynamically based on the background spread over recent cycles, with a climatological component for stability (Bonavita

et al., 2016). The EDA is used to initiate a 50–member ENS, with resolution TCo639, L91 and a 12 min timestep. Initial490

conditions are re–centred on a more recent (“Early Delivery”) unperturbed high–resolution (HRES) analysis. SV perturbations

are added to the initial conditions as a pragmatic means of boosting ENS spread over the first 2 days (Molteni and Palmer,

1993; Leutbecher and Lang, 2014). A model uncertainty (MU) parametrization, which partly aims to represent the up–scale

response sub–grid–scale uncertainty, is important for the general growth of ENS spread into the medium–range (e.g., to day

10). This MU representation is currently based on “Stochastic Perturbation to Physical Tendencies” (SPPT, Buizza et al.,495

1999), and is applied in the non–linear outer–loops of the EDA as well as in the ENS.

In the experiments here, VarBC and SPPT are “warm–started” from the operational assimilation, ENS initial condition re–

centring is not done, and SV perturbation scaling is based on the current EDA cycle rather than the previous cycle. In the

∼4 km ENS resolution experiment, the model is run in “single precision” (Ván̆a et al., 2017; Lang et al., 2021) with resolution

TCo2559 L91 and a 4 min timestep.500
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